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Chiral symmetrical alk-2-yne-1,4-diols have been stereoselectively transformed into 5-alkyl-4-alkenyl-4-
phenyl-1,3-oxazolidin-2-ones, which are precursors of quaternary a-amino b-hydroxy acids. The key step
was the cyclization of the bis(tosylcarbamates) of 2-phenylalk-2-yne-1,4-diols, easily obtained from the
starting chiral diols. These cyclizations were accomplished with complete regioselectivity and up to 92:8
dr in the presence of catalytic amounts of Ni(0) or Pd (II) derivatives under microwave heating.

� 2009 Elsevier Ltd. All rights reserved.
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Enantioenriched 1,4-diols have been shown to be versatile syn-
thons for asymmetric synthesis.1 In the course of a project aimed to
develop synthetic applications of unsaturated 1,4-diols,2 we have
recently reported the preparation of both erythro and threo b-hy-
droxy a-amino acids from a common precursor, namely a C2-sym-
metrical alk-2-yne-1,4-diol (1) (Scheme 1).3 The key step of our
approach was a stereoselective Pd(0)-catalyzed intramolecular N-
alkylation of the allylic (Z)- or (E)-1,4-dicarbamates (2) derived
from 1.4 It should be noted that due to the C2-symmetrical proper-
ties of the starting materials, only one regioisomer was possible in
such processes.

Herein, we extend the scope of our work to allylic 1,4-dicarba-
mates 3, in which symmetry is broken by an additional substituent
R0 on the double bond. Cyclization on 3 is a challenging issue since
two regioisomers, 4 and 5 are possible (Scheme 2). We were inter-
ested in the preferential formation of carbamates 4, potential pre-
cursors of quaternary amino acids after the oxidative cleavage of
the double bond. In particular, we envisaged that when R0 = Ph in
3, the ionization of the carbamate group on C(4) leading to 4, will
be favored for steric and electronic reasons. Thus, the Ph group
could better extend the conjugation of the transient p-allylic cat-
ions in a Pd(0)-catalyzed process.

Thus, we embarked on a study aimed to obtain compounds 3
(with R0 = Ph) and their further transformation into the quaternary
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carbamates 4. We wish to report herein our findings in this
connection.

As expected starting chiral diols 1 were readily desymmetrized
by reaction with phenylboronic acid in the presence of
[Pd(PPh3)4].5 As observed in Scheme 3, diols 6a–d were isolated
in 50–78% yield with complete Z selectivity using 2 mol % of Pd cat-
alyst and 10 mol % of AcOH in dioxane.6 Diols 6 were quantitatively
transformed into dicarbamates 3 by treatment with tosyl isocya-
nate (2 equiv) in CH2Cl2.

We chose 3b as a representative model to test the cyclization
step. We first applied the experimental conditions used for the
Pd(0)-catalyzed intramolecular N-alkylation of 2.3a Unfortunately,
the expected quaternary compound 4b was not observed or ap-
peared just as a minor component in a mixture (Table 1, entries
1 and 2). A series of experiments were then undertaken in which
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Scheme 1. Reported synthesis of erythro and threo b-hydroxy a-amino acids.
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Scheme 2. Cyclization of dicarbamates 3.
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Scheme 4. Ni(0)-catalyzed cyclization of dicarbamates 3.
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we changed the solvent (DMF, DMSO, mixtures with THF, and
CH3CN), the source of palladium ([Pd(Ph3P)4], [(C3H5)ClPd]2), addi-
tives [(PhO)3P, dppe, dppp], and temperatures (rt to 80 �C) without
success.7 Although in some cases the overall yields of cyclic carba-
mates were acceptable, mixtures of regio- and stereoisomers were
always obtained.

We then moved to other low-valent metal complexes that were
able to give allylic alkylation via p-allyl complexes looking for a
better control of regioselectivity. Among others, Mo,8 Ir9 or Ni10

derivatives are less efficient catalyst for allylic substitution than
Pd(0)-complexes. As a result, high temperatures and longer reac-
tions times are usually required. However, these complexes often
showed regio- and stereoselectivities quite different from those re-
corded in palladium complex-catalyzed allylic aminations.11 In
practice, the treatment of 3b with 20 mol % of [Mo(CO)6] in reflux-
ing toluene afforded preferentially isomer 5b in low yields (Table 1,
entry 3).12 The use of an Ir(0)-catalyst generated as described in the
literature in some examples of intermolecular allylic amination9b,9c

gave only the undesired isomer 5b (entry 4).13
Table 1
M(0)-catalyzed cyclization of 3b

C5H11 C5H11

O OTsHN NHTs

O O

O

C5H11
Ph

3b

M(0)

Entry Catalyst, additive Solvent, T

1a,b,c Pd2(dba)3�CHCl3 (i-PrO)3P THF, MW
2a Pd2(dba)3�CHCl3 (i-PrO)3P CH3CN, rt
3d [Mo(CO)6] Toluene, reflux
4a,c [Ir(COD)Cl]2 (PhO)3P EtOH, reflux
5d [NiCl2(PPh3)2] i-PrMgCl THF reflux
6b,d [NiCl2(PPh3)2] i-PrMgCl THF, MW

a 5 mol % catalyst was used.
b MW heating at 120 �C.
c 1H NMR of 5b indicated a mixture of 2:1 cis/trans oxazolidinones.
d 20 mol % catalyst was used.
The most favorable results were obtained with Ni(0) catalysts.
To our knowledge only a few Ni(0)-catalyzed allylic aminations
have been reported14 and none of them related with the creation
of quaternary centers. After a few preliminary experiments with
[Ni(COD)2],15 we achieved more reliable results with the Ni(0) cat-
alyst generated in situ from [NiCl2(PPh3)2] and i-PrMgCl, following
a protocol described by Cuvigny and Julia.10b

In sharp contrast with our previous attempts, the quaternary
carbamates 4 were readily obtained with complete regioselectivity
and high stereoselectivity,16 albeit in low yield (entry 5). With
Ni(0) catalyst showing promise, we performed the reaction heating
in a microwave oven to accomplish the consumption of the starting
material.17 To our satisfaction, 4b was isolated in 58% yield and a
remarkably 92:8 diastereomeric ratio (entry 6).18 In an additional
experiment in which the addition of i-PrMgCl was omitted neither
4 nor 5 was observed. Thus, the possibility that a Ni(II) species acts
as the true catalyst was ruled out.

As shown in Scheme 4, this new Ni(0)-catalyzed process was
extended to dicarbamates 4a, 4c, and 4d with complete regioselec-
tivity but in moderate yields. As far as the diastereoselectivity is
concerned, a similar trend of �9:1 ratio was observed when R
was a-branched and slightly lower for a smaller R (4a).

We then considered using Pd(AcO)2 and LiBr in THF to promote
the cyclization,19 according to a protocol recently described by Lu
et al. for the cyclization of allylic dicarbamates.20 We presumed
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Time (h) Yield (%) Ratio 4b:40b:5b

2 80 0:0:100
4 89 41:0:59
12 20 15:8:77
20 35 0:0:100
20 15 83:17: 0
2 58 92:8: 0



Table 2
Pd(II)–Catalyzed cyclization of 3

Entry 3 R Catalyst, additive Solvent T Time (h) Yield (%) ratio 4:40

1a 3b C5H11 Pd(AcO)2 LiBr THF, reflux 15 52 56:49
2a,b 3b C5H11 Pd(AcO)2 LiBr THF, MW 2 50 80:20
3c 3b C5H11 7 LiBr THF, reflux 15 55 80:20
4c 3b C5H11 8 LiBr THF, reflux 15 48 80:20
5c 3b C5H11 9 LiBr THF, reflux 15 36 78:22
6b,c 3b C5H11 7 LiBr THF, MW 2 61 80:20
7b,c 3c i-Pr 7 LiBr THF, MW 2 40 92:8
8b,c 3d c-Hex 7 LiBr THF, MW 2 52 91:9

a 10 % Pd(II) catalyst was used.
b MW heating at 120 �C.
c 8 mol % Pd(II) catalyst was used.
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that in compounds 3, the Ph group could act as directing group by
stabilizing the positive charge in the benzylic position (Scheme 5).

As expected, treatment of 3c with Pd(AcO)2 and LiBr in refluxing
THF yielded the expected product 4 with total regioselectivity but
low stereoselectivity (entry 1, Table 2). Once again, the use of
microwave heating was beneficial since the ratio 4b/40b was im-
proved to 80:20 (entry 2).

We also attempted the use of palladacycles 7–9 as a source of
(Fig. 1) Pd(II).21 Palladacycles are organometallic compounds of
growing interest in catalysis.22 Remarkably, the performance of 7
was comparable to or even slightly better than that obtained with
the above-mentioned Ni(0) catalyst (Table 2, entries 7 and 8).
These positive preliminary results and the structural variety of pal-
ladacycles indicated that there is a room for future improvements
in this field.

Finally, in order to demonstrate the value of compounds 4 in
synthesis, we successfully transformed 4c into quaternary amino
acids 11 and 14 (Scheme 6). Thus, ozonolysis of 4c followed by oxi-
dation of the crude aldehyde 10 with NaClO2

23 gave protected a-
amino a-phenyl b-hydroxy acid 11. On the other hand, aldehyde
10 was reduced and then the resulting primary alcohol 12 was pro-
tected as acetate 13. Ruthenium-mediated oxidation24 of the phe-
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Figure 1. Palladacycles 7–9.
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Scheme 6. Reagents and conditions: (a) O3, CH2Cl2, �78 �C, then Me2S, rt, 98%; (b)
NaClO2, H2O2, NaH2PO4, H2O/CH3CN, 95%; (c) NaBH4, THF, 0 �C, 100%; (d) Ac2O,
Et3N, 4-DMAP cat., CH2Cl2, 0 �C, 97%; (e) RuCl3 cat., NaIO4, CH3CN/CCl4/H2O 1:1:1.5,
45%.
nyl group afforded the a-amino b,b0-dihydroxy acid 14. It should be
noted that the substructure of the a-amino a-hydroxymethyl b0-
hydroxy acid is present in a number of bioactive natural products
such as myriocin, mycesterycins, and sphingofungins.25

In summary, we have developed a new, stereoselective ap-
proach to 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-ones. The
key step was either a Ni(0)- or Pd(II)-catalyzed cyclization in which
the use of palladacycles and the microwave heating are pivotal.
The cyclic carbamates obtained are precursors of quaternary a-
amino b-hydroxy acids as demonstrated with the compound in
which R = n-C5H11. Further applications, specially on palladacycle
catalysts, will be reported in due course.
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